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Abstract

Successful in-situ and remote visualization solutions must have minimal storage requirements and account for
only a small percentage of supercomputing time. One solution that meets these requirements is to store a compact
intermediate representation of the data, instead of a 3D volume itself. In addition to compression techniques,
it is necessary to develop new intermediate data representations that exploit the manner in which samples are
composited to generate an image. Recent work proposes the use of attenuation functions as a data representation
that summarizes the distribution of attenuation along the rays. This representation goes beyond conventional static
images and allows users to dynamically explore their data, for example, to change color and opacity parameters,
without accessing the original 3D data. The computation and storage costsof this method may still be prohibitively
expensive for large and time-varying data sets, thus limiting its applicability in real-world scenarios. In this paper,
we present an efficient algorithm for computing attenuation functions in parallel. We exploit the fact that the
distribution of attenuation can be constructed recursively from a hierarchyof blocks or intervals in the data, thus
making the process highly parallelizeable. We have developed a library ofroutines that can be used in a distance
visualization scenario or can be called directly from a simulation code to generate explorable images in-situ.
Through a number of examples, we demonstrate the application of this work to large-scale scientific simulations
in a real-world parallel environment with thousands of processors. Wealso explore various compression methods
for reducing the size of the RAF and propose the use of kernel density estimation to compute an alternative RAF
representation, which more closely represents the actual distribution of samples along a ray.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

The growing power of parallel supercomputers has en-
abled scientists to model increasingly complex physical phe-
nomena. Scientific simulations generate output that is usu-
ally volumetric, large-scale, multi-dimensional, and time-
varying. Visualizing such data sets may be a time-consuming
and a resource-intensive task. For example, the data may be
unstructured or the rendering might need to be performed
at high-resolution or it might employ an expensive lighting
model, such as global illumination. This problem is exacer-
bated when the data is visualized remotely or when the ren-
dering or interaction with the data is performed on low-end
devices.

A large body of work is dedicated to reducing the amount
of data that needs to be generated, stored, transferred over
the network, and accessed to visualize a data set. Some of the
recent and practical methods include in-situ and distance vi-
sualization. When the data is visualized in-situ, it is rendered
while the simulation is running. In this case, only an image
of the data is stored and not the 3D data itself, which results
in significant space savings. When the visualization is per-
formed remotely, a powerful cluster performs the expensive
rendering computations. Then, only the result of these com-
putations - an image - is served to the user. In both of these
approaches, the user is presented with a static image. The
lack of explicit 3D information in a static image prevents the
user from changing the properties of the data depicted in it.
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For example, a user cannot modify the transfer function after
an image has been rendered.

A number of existing solutions enable exploration in
transfer function space by generating a collection of images
instead of a single image. Images in this collection are ren-
dered with different transfer function settings. In this ap-
proach, changes to the transfer function are simulated by
synthesizing new images from the training set. Other image-
based rendering solutions focus on providing fast transfer
function changes by caching view-dependent samples. Both
of these approaches are not practical for in-situ and distance
visualization. Rendering each time step multiple times with
different parameters can be time-consuming, especially if a
large range or fine granularity of transfer function modifica-
tion are desired. Caching view-dependent samples for each
time step may also be prohibitively expensive.

Another approach to preview or exploratory visualization
is to use intermediate representations of volume data. As an
example, Tikhonova et al. [TCM10b] develop a novel ap-
proach for interactive visualization and exploration based on
Ray Attenuation Functions (RAF), which encode the distri-
bution of samples along each ray. This representation can be
thought of as a compact cache of attenuation values, which
reduces the computational complexity of data visualization
and exploration and enables to defer these operations to a
later time. Even though this representation is very compact,
it is powerful enough to enable the users to dynamically fil-
ter information presented on the screen, such as modifying
opacity and color of the features depicted in volume ren-
dered images. However, the application of this approach to
in-situ and remote visualization demands efficient solutions
to the following two challenges: (1) a compact intermediate
data representation that can be efficiently stored on disk or
distributed over a network; (2) an efficient mechanism for
obtaining such a representation, even for large-scale data.

In this paper we address both of these challenges. We pro-
vide an efficient and practical algorithm for computing at-
tenuation functions in parallel for very large datasets. We
extend the RAF representation to interval attenuation func-
tions (IAF). The IAF are computed for every part of a large
data set in a distributed environment and then the local re-
sults are combined into a global representation of a data set,
thus reducing the running time of the RAF computation from
O(n3) to O(n3/p+C), wheren is the number of voxels,
p is the number of processors, andC is compositing time,
where compositing is performed inO(log(p)) steps. Each
processor performs computations onO(n3/p) voxels. We
demonstrate that this process can be implemented in a real-
world parallel environment with relative ease. We develop
a library of routines that can be used in the distance visual-
ization scenario or can be called directly from a simulation
code to generate explorable images in-situ. In addition, since
the attenuation functions encode image-like data, they can
be stored compactly using conventional data reduction and

image compression strategies, such as data quantization and
lossless PNG compression. We also use statistical modeling
of the ray attenuation functions to obtain compression that
better preserves the information stored in them. We observe
that attenuation functions are weighted histograms that rep-
resent the distribution of attenuation along a ray traversing
a volumetric object. Therefore, we can leverage parametric
and non-parametric models for probability distribution func-
tions to encode the RAF more efficiently.

The ability to obtain the RAF faster and to encode
them more efficiently is crucial for in-situ and remote vi-
sualization. While simulation time dominates the computa-
tional time of large-scale scientific studies, our methodol-
ogy allows scientists to allocate computation time to pre-
visualization and storage of attenuation functions. We envi-
sion our contribution will enable scientists to store more of
the data they are currently forced to discard. Since the in-
termediate representation is explorable, we also expect that
the combination of the intermediate representations and the
saved volume data will enrich the exploratory experience.

Using our technique, users can easily steer the simula-
tion by storing compact representations of their large-scale
simulation data while the simulation is running. They can
quickly experiment with different transfer function parame-
ters on their laptop or mobile device. When the user is satis-
fied with the settings, the system can use them for the rest of
the simulation. Our technique can also be used for remote or
distance visualization. Instead of waiting for a remote cluster
to volume render an image and transfer it over the network,
the users can work with an intermediate representation, and
only when they are satisfied with the rendering settings, the
system can volume render a high-resolution image.

2. Related Work

Previous solutions focus on reducing the amount of data
that needs to be generated, stored, transferred over the net-
work, and accessed to visualize and explore large-scale data
sets. Data reduction techniques are most commonly used for
this purpose. Image-based and layer-based rendering meth-
ods offer an efficient alternative solution. In this section, we
describe these methods in more detail.

2.1. Data Reduction Techniques

Data reduction techniques reduce the data to a more compact
representation for efficient subsequent analysis and visual-
ization. Some of the most common methods include sub-
sampling in the spatial or temporal domains (i.e., skipping
time steps), scalar and vector quantization, transform-based
compression, and feature extraction. The choice of an ap-
propriate method depends on the storage space constraints,
network bandwidth, the acceptable amount of error and pre-
cision in visualization, and sometimes on the parallel domain
decomposition used in a particular simulation code. It is also
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possible to employ several data reduction methods together
(e.g., quantization and subsampling) to reduce the data to an
even greater extent.

Typically, data reduction is a post-processing step. The
output size of large-scale scientific simulations can also be
reduced in-situ. The in-situ approach is particularly effec-
tive because it decreases resource requirements for all subse-
quent data transmission, storage, and processing tasks. How-
ever, the entire volume, even if reduced, has to be stored
and visualized using a 3D algorithm, such as direct volume
rendering, which requires many (often redundant) access to
volume data. Another solution is to extract physically-based
features of interest, which are generally much smaller than
the original data. This requires extensive domain knowledge,
especially for time-varying data sets. An overview of data re-
duction methods in the context of in-situ processing is pro-
vided in [MWYT07].

2.2. Image-based Rendering

Image-based rendering methods provide an alternative to
storing 3D data. Most of these methods generate a collec-
tion of images or intermediate layers that can be used to
explore one or several parameters of volume rendering. For
example, He et al. [HHKP96] and Marks et al. [MAB∗97]
propose the pre-computation of a gallery of images, each
of them containing a different combination of opacity and
color settings that users can browse as an alternative to di-
rect manipulation in the 3D space. To alleviate the need for
generating a large number of images, these approaches can
be improved with automated analysis [WQ07] or effective
user interfaces [RPSH08,RBG07]. An alternative to explor-
ing the image-space of volume rendering is to use interme-
diate images. These can be cached results from volume data
[MCP91, LP03], compressed runs of structured [SCM03]
and unstructured [SLSM06] volume data, or alpha layers
extracted from a set of images [TCM10a]. Although in
the same spirit of these approaches, other layer-based tech-
niques, such as semantic layers [RBG07], opacity [RSK06]
and feature peeling [MMG07] are designed for improving
the visibility of features in 3D volume rendering. As image-
based representations, these can also be useful for caching
intermediate rendering results.

These approaches are not always practical for in-situ and
distance visualization. The pre-computation of image gal-
leries for multiple opacity and color combinations is pro-
hibitive for in-situ visualization. Peeling approaches require
access to the full 3D data when opacity values change, and
image caches get invalidated when opacity changes result
in a cache miss. In this paper, we focus on attenuation his-
tograms as intermediate representations, and we show that
they can be efficiently computed for in-situ visualization,
are compact, and can be used to explore opacity and color
changes of the volume data.

2.3. Parallel and Distributed Rendering

Typically, parallel rendering solutions consist of the follow-
ing stages: data partition and distribution, rendering, im-
age compositing, and image delivery. The three well-known
parallel rendering approaches include sort-first, sort-middle,
and sort-last, defined by Molnar et al. [MCEF94]. Due to its
scalability and the simplicity of its load balancing strategy,
sort-last rendering is widely used by the visualization com-
munity [AP98, EP07], to cite a few. Sort-last rendering re-
quires a final image compositing stage which could be very
expensive due to the amount of inter-processor communica-
tion involved. The most commonly used image compositing
methods, developed for sort-last parallel volume rendering,
are direct-send [Neu94] and binary swap [MPHK93]. These
two methods require the different numbers of messages ex-
changed among theN compositing processors. The direct-
send method requires all-to-all communication and the num-
ber of exchanged messages is bounded byO(N2). The bi-
nary swap method balances the compositing workload us-
ing a binary tree style compositing process, thus reducing
the number of required messages toO(Nlog(N)). However,
the binary swap method needsN to be a power of two. In
this paper, we use the 2-3 swap parallel image composit-
ing algorithm by Yu et al. [YWM08], which is a general-
ization of the binary swap algorithm and a subset of the
Radix-k algorithm [PGR∗09]. The 2-3 swap algorithm re-
quires onlyO(Nlog(N)) messages and can use an arbitrary
number of processors. The algorithm involves a multistage
process and partitions the processors into groups using the 2-
3 compositing tree. At any image-compositing stage, a pro-
cessor communicates only with the other processors in its
group, thus reducing the number of message exchanges. The
2-3 swap method scales well to thousands of processors and
has been applied in thein-situ visualization system for real-
world large-scale combustion simulations [YWG∗10].

3. Parallel Preview and Exploration Framework

A previewing and exploration system for visualization
should enable users to quickly visualize their data and to im-
mediately see the result of a change in visualization param-
eters. These capabilities are essential for steering a simula-
tion in the in-situ scenario. Remote visualization users can
experiment with different visualization parameters on their
local machine and only request the system to render a high-
resolution image, when absolutely necessary.

As described in Sec. 2.2, many existing approaches rely
on a collection of images to achieve an efficient image-
based solution, but offer limited exploration capabilities. In
our approach, we use an intermediate representation of vol-
ume data. This representation can be thought of as a view-
dependent summary of attenuation information. This allows
us to simulate new images with different rendering parame-
ters, without accessing the original data.

In [TCM10b], the RAF store the attenuation due to each
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sample along a ray for several intensity value ranges. These
attenuation functions are shown to be useful to reproduce the
composited color when performing volume rendering, but
at a reduced computational cost. Their algorithm is imple-
mented on the GPU; however, the computation of the RAF
is still sequential for each ray. Therefore, the algorithm has
limited application to large-scale visualization, where a vol-
ume might not fit entirely in CPU or GPU memory.

In this paper, we develop an efficient and practical algo-
rithm for computing the RAF in parallel, which assumes that
the data is split amongp processors in volume segments
of arbitrary shape and size. We also show that the result-
ing functions can be stored efficiently using even more com-
pact representations. In particular, we exploit existing im-
age compression and data reduction techniques to reduce the
storage requirement of the RAF. We also introduce a differ-
ent way to construct the RAF through the use of KDE.

To develop a parallel algorithm, we introduceInterval At-
tenuation Functions (IAF), which summarize the attenuation
information for a given ray segment. We demonstrate that the
full RAF can be built in parallel from a collection of IAF.

3.1. Interval Attenuation Functions (IAF)

The RAF summarize the attenuation due to each intensity
value for a number of data ranges to approximate the vol-
ume rendering integral. According to the volume rendering
integral [Max95], the color resulting from compositing vol-
ume data is:

C =
∫ N

0
C(t)τ(t)e−

∫ t
0 τ(s)dsdt, (1)

whereC(t) is the radiance or color andτ(t) is the attenuation
of a samplet along a ray, witht ranging from 0 toN. When
discretized, this equation becomes:

C =
N

∑
i

C(i)α(i)
i−1

∏
j=0

(1−α( j)), (2)

whereα(i) is the opacity of a sample along the view direc-
tion and∏i−1

j=0(1−α( j)) is the attenuation due to all sample
points in front of a samplei, andN is the number of samples
along a ray. Grouping the intensity values into discrete bins,
the above equation can be approximated as follows:

C ≈
Nbins

∑
k=1

C(k) ∑
{i|i=0,1,...,Nbins}AND bin(i)=k

α(i)
i−1

∏
j=0

(1−α( j)),

wherebin(i) is a function, assigning an intensity value of a
samplei to a bink, andNbins is the number of bins. The in-
ner sum describes the distribution of attenuation along a ray
with respect to an intensity value. This is theRay Attenuation
Function(RAF). Fig. 1 shows the process of accumulating
the attenuation of intensity values into a finite set of bins.

To understand our IAF computation algorithm, let’s take
another look at the light transport equation for a volumetric

Figure 1: Ray Attenuation Functions (RAF) are obtained
by accumulating the attenuation of intensity values grouped
into a finite set of bins.

Figure 2: Computation of Interval Attenuation Functions.
Left: In a sequential framework, the attenuation function
must be computed for an entire ray. Right: In a parallel
framework, the attenuation function can be computed in par-
allel, for several intervals. The IAF are then combined to
create the full attenuation function.

model. For a given interval(l ,h) in the intensity domain, the
accumulated attenuation is the combined contribution of all
samples with an intensity value that falls within that interval:

a(l ,h)≈
N

∑
i=0

l<V(i)≤h

α(i)
i−1

∏
j=0

(1−α( j)), (3)

whereα(i) is the opacity of a sample along the ray,V(i) is
the scalar intensity value at that point, andN is the number
of samples along a ray.

This suggests, that the IAF can be computed hierarchi-
cally, where the function for a large interval can be ex-
pressed as a linear combination of any number of functions
of smaller intervals. Therefore, the ray in Eq.1 can be split
in two intervals (t ∈ [0,M) andt ∈ [M,N)) and the equation
can be rewritten as:

C =
∫ M−1

0
C(t)τ(t)e−

∫ t
0 τ(s)dsdt+

e−
∫ M−1

0 τ(s)ds
∫ N

M
C(t)τ(t)e−

∫ N
M τ(s)dsdt (4)

The above relationship can be discretized as a sum of prod-
ucts of attenuations ofN samples along a ray. In this case, the
ray is split into two sets of samples, wherei ∈ {0, . . . ,M−1}
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andi ∈ {M, . . .N}:

C =
M−1

∑
i=0

C(i)α(i)
i−1

∏
j=0

(1−α( j))+

M−1

∏
j=0

(1−α( j))
N

∑
i=M

C(i)α(i)
i−1

∏
j=M

(1−α( j)) (5)

These attenuations can be grouped into bins, in order to ap-
proximate color, as shown in [TCM10b]. Moreover, we can
define an interval attenuation function for an interval[L,M],
which adds up the contributions of all samples in the interval
[L,M] that fall within a bink:

F[L,M](k) =
M

∑
i=L

Bin(i)=k

α(i)
i−1

∏
j=L

(1−α( j)) (6)

so that the composited color along a ray interval can be ap-
proximated as:

M

∑
i=L

C(i)α(i)
i−1

∏
j=0

(1−α( j))≈
Nbins

∑
k=1

C(k)F[L,M](k), (7)

Therefore, Eq.4 becomes:

Nbins

∑
k=1

C(k)F(k) =
Nbins

∑
k=1

C(k)F[0,M−1](k)+

M−1

∏
j=0

(1−α( j))
Nbins

∑
k=1

C(k)F[M,N](k), (8)

and then it becomes clear that the attenuation function can
be defined recursively as:

F[0,N](k) = F[0,M−1](k)+
M−1

∏
j=0

(1−α( j))F[M,N](k) (9)

In other words, the IAF of an interval, composed of two
sub-intervals, can be defined in terms of the IAF of each
sub-interval, with the attenuation contributions of the second
sub-interval (further into the volume from the eye position)
modulated by thetotal attenuationof the first sub-interval.
By induction, each sub-interval can be computed as a com-
bination of smaller intervals. Without loss of generality, let
us assume there areP sub-intervals. The attenuation of the
ith sub-interval is denoted as:

A(i) =
Ni−1

∏
j=0

(1−α( j)), (10)

whereNi is the number of samples in a sub-interval. Thus,
the total IAF for a bink can be composited as:

F(k) =
P

∑
i=0

F(i,k)
i−1

∏
j=0

A( j), (11)

whereF(i,k) is the IAF of theith sub-interval for a bink, and
can be obtained using Eq.6.

We can see that the above compositing operation is as-
sociative. For example, assume that there are four sub-
intervals, their IAF are denoted asF0, F1, F2, F3, and their
attenuation values are denoted asA0, A1, A2, A3. The accu-
mulated IAF of the first two sub-intervals is:

F01 = F0+A0F1 (12)

and the accumulated attenuation value of the first two sub-
intervals is:

A01 = A0A1 (13)

Similarly, the accumulated RAF of the last two sub-intervals
is:

F23 = F2+A2F3 (14)

Thus, the, total RAF calculated fromF01 andF23 is:

F = F01+A01F23

= F0+A0F1+A0A1F2+A0A1A2F3, (15)

which is same as the result obtained by evaluating Eq.11
in sequential fashion. We can also see that the sequence of
the operands of the compositing operation is in the visibility
order, which can not be changed, i.e. the compositing oper-
ation is not commutative.

3.2. Parallel Algorithm for Attenuation Functions

Based on the above formulation, we can build a parallel algo-
rithm for computing attenuation functions. Our algorithm re-
duces the running time of the computation of ray attenuation
functions fromO(n3) to O(n3/p+C), wheren is the num-
ber of voxels,p is the number of processors, andC is com-
positing time, where compositing is performed inO(log(p))
steps. Each processor performs computations onO(n3/p)
voxels. The derivation of our block-based algorithm and the
details of our parallel algorithm are as follows.

We construct the RAF on the same machine used to run a
given simulation. Thus, we directly use the domain decom-
position used in a simulation to compute the IAF, thus avoid-
ing unnecessary data replication. We assume the data is par-
titioned in a block-based fashion amongp processors, which
is a typical scenario in our target simulations [CCdS∗09].
To achieve seamless IAF results, the data along the partition
boundaries is duplicated among the neighboring processors.
Each processor needs to propagate boundary information to
its 26 neighboring processors in 3D. We employ the diago-
nal communication elimination method [DH01] to minimize
the communication costs associated with this task. Using this
method, a processor needs to communicate with only 6 of its
neighbors for boundary exchange.

After exchanging boundary data, each processor evaluates
Eq.6 on its corresponding intervals to obtainFi , along with
its local accumulated attenuationAi . After this phase com-
pletes, each processor has an attenuation value and an array
of IAF values at each pixel.
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(a) (b) (c) (d) (e)

Figure 3: Transfer function operations for a turbulent combustion simulation (HO2 variable) using the RAF. (a) Image recon-
struction using the attenuation functions with the original transfer function. (b) and (d) Opacity modulation and re-colorization.
(c) and (e) Ground truth volume rendered images of (b) and (d), respectively.

Number of processors 240 1920 6480

Simulation time (sec) 8.7204 9.3393 9.5573
I/O time (sec) 9.4563 26.051 52.565
Total volume rendering time (sec) 0.3817 0.6155 0.7359
Boundary voxel exchange 0.0042 0.0059 0.0064
Ray casting 0.0226 0.0148 0.0095
Image compositing 0.3549 0.5948 0.7200
Total IAF computation time (sec) 1.2775 1.3938 1.3973
Boundary voxel exchange 0.0026 0.0066 0.0068
IAF construction 0.0806 0.0729 0.0450
IAF compositing 1.1943 1.3143 1.3455

Table 1: The timing breakdown for different processor counts with10242 output image resolution.

The next step is to composite the local IAF into the fi-
nal result. The naive strategy is for a single processor to first
gather the local IAFs and the attenuation values from all pro-
cessors, and then to loop through all the pixels to compute
the final RAF values for each pixel, using Eq.11. However,
N − 1 processors are idle during this compositing process
and the desired parallelism is least exploited. Instead, we

treat the IAF compositing task as a typical vector reduction
problem, i.e., we gather the attenuation functions hierarchi-
cally. The associative property of the IAF compositing oper-
ation allows us to re-parenthesize the compositing operator
to exploit concurrency. This is similar to the well-studied
parallel image compositing problem. Rather than propagat-
ing RGB tuples, we propagate a tuple ofN components of
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the IAF bins. The hierarchical computation of the attenu-
ation function is depicted below, for four intervals, where
t1− t3 are levels in the hierarchical reduction:

t1 t2 t3
(F0,A0)

(F0+A0F1,A0A1)

(F1,A1)
(F0+A0F1+A0A1(F2+A2F3),
A0A1A2A3)

(F2,A2)
(F2+A2F3,A2A3)

(F3,A3),

From the various solutions for parallel image composit-
ing, we choose the 2-3 swap method by Yu et al. [YWM08].

4. Results

In our experiments, we used a turbulent combustion sim-
ulation performed at Sandia National Laboratories (SNL).
Our test environment is the Cray XT5 at the National Cen-
ter for Computational Sciences (NCCS) at Oak Ridge Na-
tional Laboratory (ORNL). The XT5 contains 18,688 com-
pute nodes. Each node contains dual hex-core AMD x86_64
Opteron processors running at 2.6GHz, 16GB memory, and
a SeaStar 2+ router. In this combustion simulation, each core
is assigned a region of 27×40×40. We tested three differ-
ent numbers of cores: 240, 1920, and 6480, with the core
configuration of 15×8×2, 30×16×44, and 45×24×6,
respectively.

Table1 lists the volume sizes and timing results. All vari-
ables for volume data are double floating point (eight bytes).
We use 32-bit floating point for the RGBA and depth chan-
nels, and for the RAF values. We also use 10242 image res-
olution. The timing for simulation, I/O, volume rendering,
and RAF computation was measured for one time step. Dur-
ing I/O time, the simulation code stores the simulation data
into storage devices. We can see that volume rendering and
RAF computation time accounts only for a small fraction of
the total simulation and I/O time. For example, if we per-
form volume rendering and RAF computation at each simu-
lation time step for 6,480 cores and 10242 image resolution,
volume rendering time is approximately 7.70% of the simu-
lation time, and the RAF computation time is approximately
14.62% of the simulation time; I/O time is more than five
times the simulation time. In practice, we usually perform
in-situ visualization less frequently (every 10th time step),
so the visualization time can be two orders of magnitude less
than the overall simulation time.

Fig. 3 shows the results of exploring color and opacity
mappings using the RAF for the HO2 variable. Fig.3 (a)
shows the reconstruction result with the original transfer
function. Fig.3 (b) and (d) show the effect of opacity mod-
ulation and re-colorization. Fig.3 (c) and (e) are the ground
truth images obtained using direct volume rendering with the

Figure 4: Reconstruction error (SSD) between the images
reconstructed from the original RAF vs. images recon-
structed from the decompressed RAF as we reduce/increase
opacity of all intervals for two variables of a combustion
simulation. Opacity modulation of 0 corresponds to no opac-
ity change and is the base error. We see a smooth increase in
error as opacity is reduced/increased further.

transfer functions in (b) and (d), respectively. We can see that
the in-situ RAF results enable us to explore and highlight
structure of interest in post-processing without accessing the
original simulation data.

4.1. Compression Methods for the RAF

An important consideration for reducing the size of data used
in scientific studies is whether the compression is lossless or
lossy. Loss of data may not always be acceptable; in fact,
scientists usually prefer lossless compression methods that
preserve the accuracy of their original results. However, due
to storage space constraints and network bandwidth limita-
tions, it is a common practice to store only a subset of the
time steps generated by scientific simulations. Sometimes,
hundreds of time steps are skipped. Thus, it is important to
note that discarding time steps or storing only static images
of time steps instead of the original data is, in essence, a
lossy compression itself. Therefore, compared to completely
discarding all or some intermediate time steps, compressing
them in a lossy manner is a substantial improvement. We
consider methods in both lossy and lossless compression
as candidates for reducing the size of the RAF intermedi-
ate representation. In particular, since the data stored in the
RAF exhibits image-like qualities, we employ such classic
data reduction and image compression methods as quantiza-
tion and lossless PNG compression. We also present meth-
ods that fit a statistical model to the attenuation distribution.

Conventional Data and Image Compression.Quantiza-
tion is a commonly used data reduction method. It is the
process of approximating or mapping a continuous range of
values by a relatively smallfinite set of discrete values. In
this case, we are rounding single or double precision float-
ing point values (32 and 64 bits, respectively) to 8 bits, which
would result in 4× to 8× compression.
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In our experiments, lossless PNG image compression pro-
duced best compression ratios, without a significant loss of
visual quality. To take advantage of spatial consistency, in-
stead of storing consecutive RAF values per each pixel (say,
16 bin values for every pixel), we store the values for each
“bin" in the RAF as a single-channel image. Fig.4 shows
the reconstruction error (SSD) between the images recon-
structed from the original RAF vs. images reconstructed
from the decompressed RAF as we reduce/increase opacity
of all intervals for two variables of a combustion simulation.
Opacity modulation of 0 corresponds to no opacity change
and is the base error. We see a smooth increase in error as
opacity is reduced/increased further. The size of the resulting
PNG image for the first example is 754KB, which results in
approximately 54× compression in comparison with storing
the original RAF (here, 16 floating point values per pixel for
an 800×800 image size). The size of resulting PNG image
for the second example is 631KB, which results in approxi-
mately 63× compression.

Parametric Model Fitting. The goal of parametric model
fitting is to estimate the distribution parameters of the given
attenuation distribution. For a given pixel, we can think of
the RAF as a histogram, where the entire intensity value
range is divided intoN uniform bins. Histograms, how-
ever, are usually not smooth and assume a nearest neigh-
bor assignment of data to bin values, which is very sensi-
tive to the number and placement of the discrete bins. On
the other hand, parametric models better represent an under-
lying distribution, using a finite number of parameters, i.e.
there is a known upper bound on the required storage space.
Since our data is image-based, our mathematical model of
choice is the mixture of Gaussian functions of the form:
G(x,A,µ,σ) = Ae−(x−µ)2/2σ2

, whereA is the amplitude of
the curve, andµ andσ are the mean and standard deviation
of the curve, respectively. Thus, the RAF per pixel can now
be represented as:F(x) = ∑K

i=0 G(x,Ai ,µi ,σi).

Each sample along a ray contributes to the computation of
the RAF for that ray. Since a ray may intersect only a few of
the features in a data set, we usually do not encounter sam-
ples from each interval in the entire data range during our
computation. Thus, the number of Gaussians in the mixture
for each ray can be estimated from the number of features
a ray intersects or the number of spikes/peaks in the RAF
values for that ray. This can be done by quickly scanning the
values in a RAF and extracting the amplitudeA and meanµ
for each peak. The standard deviation can be either fixed or
estimated from the original RAF. We estimate theσ for each
Gaussian in the mixture by clustering the data. The cluster
includes the peak itself along with the neighboring values, so
that they do not overlap any neighboring peaks. This strat-
egy is easy to implement and works well for a small number
of bins in an attenuation function (say, 16 values). For RAF
containing a larger number of bins, say 64 or more, we use
the k-means algorithm to partition the RAF values into clus-

(a)

(b) (c)

Figure 5: (a) Image of a combustion simulation, generated
using the original IAF with a close-up of one section. (b -
c) Close-up difference images (difference amplified by50×)
between the image reconstructed using the original RAF and
the RAF reconstructed from a mixture of Gaussians with
fixed (b) and estimated (c) c. (d - e) Plots of the result of
fitting a mixture of Gaussian functions for a single RAF, cor-
responding to the pixel with coordinates (100, 300), for fixed
(d) and estimated (e) c.

ters. The Gaussian parameters are obtained as the mean and
standard deviation of each cluster.

We achieve compression by storing the parameters for
each Gaussian in the mixture, instead of the original RAF.
Later, when the data is visualized, we can reconstruct the
RAF by estimating each value in the RAF from the stored
parameters for the mixture of Gaussians. Fig.5 shows the
results of RAF reconstruction from the mixture of Gaussians
for a combustion simulation. In particular, we visualize the
OH variable, representing the mass fraction of the hydroxyl
radical. We use a transfer function with 7 distinct peaks.
Fig. 5(a) shows the image reconstructed from the original
RAF with a close-up view inset. Fig.5(b) shows the differ-
ence image (computed using the sum of square differences)
between the original and the reconstruction results using a
fixed value ofc for each Gaussian. Fig.5(c) shows the dif-
ference image for the reconstruction results using estimated
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(a) Original RAF (16 values) (b) KDE (16 estimates) (d) KDE (8 estimates)

Figure 6: Comparison of image reconstruction results using the original RAF (a) vs. KDE estimates (b-c). In (c) we demonstrate
image reconstruction from only 8 KDE estimates, which results in2× space savings without a major loss in quality.

values ofc. The difference is amplified by 50×. Fig. 5(d-
e) shows the result of fitting a mixture of Gaussian functions
for a single RAF, corresponding to the pixel with coordinates
(100, 300), for both methods, in a plot form.

In this example, the size of our RAF representation is 16
values per pixel for an 800× 800 image. Storing two val-
ues per Gaussian (fixedσ) results in approximately 3.37×
compression and storing three values per pixel (variableσ)
results in approximately 2.25× compression, without a ma-
jor loss of quality. The data can be further compressed using
the data/image compression methods described above.

4.2. Non-parametric Model Fitting

As opposed to parametric techniques, non-parametric model
fitting methods can be used with arbitrary distributions. One
of the most commonly used non-parametric technique is
k
¯
ernel density estimation (KDE) [Sco92, Sil98, WJ95]. In

kernel density estimation, the contribution of each data point
is smoothed out over a local neighborhood of that data point,
according to the following formula:

f̂h(x) =
1
n

n

∑
i=1

Kh(x−xi) =
1
nh

n

∑
i=1

K(
x−xi

h
), (16)

whereK is the kernel (we use a Gaussian kernel) andh is a
smoothing parameter, or bandwidth.

We use KDE to compute an alternative RAF representa-
tion (N estimates), which more closely represents the actual
distribution of samples along a ray. We use constant band-
width, for simplicity. Figure6 compares the results of image
reconstruction from the original RAF vs. KDE estimates. In
Figure6(c), we demonstrate image reconstruction from only
8 KDE estimates, which is 2× less than the number of val-
ues used in (a) and (b), which results in significant space
savings, without major loss of quality. Using KDE becomes

necessary for larger data sets and for transfer functions of
higher frequency.

5. Limitations and Future Work

The IAF computation algorithm, presented in this paper, is
general. It does not make any assumptions about the data and
can be adopted to different scientific volumetric representa-
tions. Currently, we assume that volume data is stored in a
regular grid, as it is common in scientific simulations. How-
ever, our technique also applies to less structured data, such
as volumes discretized in unstructured meshes, or particle
data, often used in smoothed particle hydrodynamics. The
additional challenge in RAF computation for these types of
data is handling ray traversals through the data efficiently.

Similar to the limitations described in [TCM10b], the de-
gree of exploration available to users is bounded by the
amount of information that can be encoded in the RAF. Due
to attenuation, entire intervals in a volume may be poorly
represented in the RAF, in which case it is not possible to
retrieve the occluded features by means of attenuation mod-
ulation. A possible solution is to detect regions where attenu-
ation reaches zero, similar to the opacity peeling techniques.
This is the focus of our future work.

Attenuation functions are computed for a given view, so
the intermediate representation is only valid for a given view.
However, due to the compactness of the representation, it
is now possible now to store several RAF for a number of
views. The visualization system can then offer the user the
ability to change the orientation at interactive rates.

6. Conclusion

New approaches to large data visualization are needed to
address the upcoming peta-scale data challenges. Although
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previous work has made strides towards computing interme-
diate representations of volume data, the existing approaches
often do not scale to large data sets. In this paper, we present
a parallel algorithm and its implementation for efficiently
computing a compact intermediate representation of large
volume datasets. We show that we can achieve parallelism
in two ways. Similarly to the way parallelism is exploited
in contemporary graphics processing units, we process ev-
ery pixel in an image in parallel. The second, less trivial
part is the exploitation of the associative property of attenu-
ation along viewing rays. We have also shown that a block-
based decomposition of the data helps us compute attenua-
tion functions for large volume data sets efficiently. More-
over, we demonstrate a general mechanism for computing
attenuation functions in parallel for less structured data. Our
results demonstrate that the algorithm can produce compact
representations of volume data that can be used for explo-
ration, without much compromise on the accuracy of the ren-
dering results. Convinced by the results of our algorithm, we
believe that preview and exploratory techniques as ours will
become widespread, because they can be easily deployed in
in today’s in-situ and remote visualization settings.
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